

SSiimmpplleeLLPPRR

22..44
Software Development Kit

 SimpleLPR 2.3 Software Development Kit 1 of 36

© Copyright 2009 Warelogic

 SimpleLPR 2.3 Software Development Kit 2 of 36

Version History

Doc. version Prod. version Date Description

1.0 2.0 28-Nov-09 First version of this document

1.1 2.1 22-May-11 Version 2.1of SimpleLPR

1.2 2.2 1-July-11 Version 2.2 of SimpleLPR

1.3 2.2.4.0 29-Oct-11 Version 2.2.4.0 of SimpleLPR

1.4 2.2.5.0 29-Nov-11 Version 2.2.5.0 of SimpleLPR

1.5 2.3.0.1 19-July-12 Version 2.3.0.1 of SimpleLPR

1.6 2.4.0.1 2-July-14 Version 2.4.0.1 of SimpleLPR

 SimpleLPR 2.3 Software Development Kit 3 of 36

Liability Disclaimer

Warelogic assumes no responsibility for any errors that may appear in this document nor

does it make expressed or implied warranty of any kind with regard to this material,

including, but not limited to, the implied warranties of merchantability and fitness for a

particular purpose.

To allow for design and specification improvements, the information in this document is

subject to change at any time, without notice. Reproduction of this document or portions

thereof without prior written approval of Warelogic is prohibited.

Warelogic shall not be liable for incidental or consequential damages in connection with, or

arising out of the furnishing, performance, or use of this document and the program material

that it describes.

Microsoft, MS, MSN, ActiveX, Windows, Windows NT, Visual Basic, Visual C++, and the

Windows logo are either registered trademarks or trademarks of Microsoft Corporation in

the United States and/or other countries. Microsoft products are licensed to OEMs by

Microsoft Licensing, Inc., a wholly owned subsidiary of Microsoft Corporation.

All other product, brand, or trade names used in this publication are the trademarks or

registered trademarks of their respective trademark owners.

 SimpleLPR 2.3 Software Development Kit 4 of 36

Table of Contents

1 Introduction ... 7

2 Supported Countries and Limitations .. 8

2.1 License Plates of Algeria .. 8

2.2 License Plates of Australia ... 8

2.3 License Plates of Belgium .. 8

2.4 License Plates of Bolivia ... 8

2.5 License Plates of Brazil ... 8

2.6 License Plates of Bulgaria .. 8

2.7 License Plates of Canada ... 8

2.8 License Plates of Cape Verde ... 9

2.9 License Plates of Chile ... 9

2.10 License Plates of Colombia ... 9

2.11 License Plates of Croatia ... 9

2.12 License Plates of Cuba ... 9

2.13 License Plates of the Czech Republic ... 9

2.14 License Plates of Denmark .. 9

2.15 License Plates of Ecuador .. 9

2.16 License Plates of El Salvador ... 9

2.17 License Plates of Estonia .. 10

2.18 License Plates of France ... 10

2.19 License Plates of Germany .. 10

2.20 License Plates of Greece ... 10

2.21 License Plates of Guatemala ... 10

2.22 License Plates of Honduras ... 10

2.23 License Plates of Hungary ... 10

2.24 License Plates of India .. 10

2.25 License Plates of Ireland .. 11

2.26 License Plates of Israel ... 11

2.27 License Plates of Italy ... 11

2.28 License Plates of Kenya.. 11

2.29 License Plates of Latvia .. 11

2.30 License Plates of the Netherlands ... 11

2.31 License Plates of Norway .. 11

 SimpleLPR 2.3 Software Development Kit 5 of 36

2.32 License Plates of Peru .. 11

2.33 License Plates of Poland... 12

2.34 License Plates of Portugal .. 12

2.35 License Plates of Romania ... 12

2.36 License Plates of Singapore ... 12

2.37 License Plates of Slovakia .. 12

2.38 License Plates of Spain ... 12

2.39 License Plates of Sweden ... 12

2.40 License Plates of Switzerland .. 13

2.41 License Plates of Turkey .. 13

2.42 License Plates of the United Kingdom ... 13

2.43 License Plates of Venezuela .. 13

2.44 License Plates of Vietnam .. 13

3 Prerequisites, Installation and Deployment .. 14

3.1 Prerequisites ... 14

3.2 Installation ... 14

3.3 Deployment .. 14

4 License Plate Recognition with SimpleLPR 2 ... 15

4.1 SimpleLPR 2 Instantiation ... 15

Native C++ Applications .. 15

.NET Applications .. 15

4.2 Engine Configuration .. 16

Native C++ Applications .. 16

.NET Applications .. 17

4.3 License Plate Recognition .. 17

Native C++ Applications .. 17

.NET Applications .. 18

4.4 Considerations on Error Handling and Resource Management 19

Native C++ Applications .. 19

.NET Applications .. 19

5 C++ Interface Reference .. 20

5.1 Functions ... 20

5.1.1 Setup .. 20

5.2 Structures ... 20

5.2.1 Rect .. 20

 SimpleLPR 2.3 Software Development Kit 6 of 36

5.2.2 Element ... 20

5.2.3 VersionNumber .. 21

5.3 Interfaces ... 21

5.3.1 IReferenceCounted .. 21

5.3.2 IErrorInfo .. 22

5.3.3 ICandidate .. 22

5.3.4 ICandidates ... 23

5.3.5 IProcessor... 24

5.3.6 ISimpleLPR .. 26

6 .NET Interface Reference ... 30

6.1 SimpleLPR ... 30

6.1.1 Methods .. 30

6.2 ISimpleLPR .. 30

6.2.1 Properties ... 30

6.2.2 Methods .. 30

6.3 IProcessor ... 32

6.3.1 Methods .. 32

6.4 Candidate .. 34

6.4.1 Fields .. 34

6.5 Element .. 34

6.5.1 Fields .. 34

 SimpleLPR 2.3 Software Development Kit 7 of 36

1 Introduction

At the present time there are many license plate recognition (LPR) solutions in the market,

designed to work in areas such as: traffic control and monitoring, parking access, vehicle

management, detection of security violations and so forth. The best LPR engines support

many countries, all license plate layouts, char sets, and some of them feature a 98%

recognition rate or greater at recognition speeds of less than 10 ms per frame. Not

surprisingly, this superior performance generally comes at a price; the best engines can cost

thousands of dollars per runtime license.

On the other hand, there are consumer oriented applications that would benefit from LPR

but the cost of a high end LPR engine is too high for their segment. This is where SimpleLPR

2 comes in. SimpleLPR 2 is a royalty free low end LPR engine directed to price sensitive

applications that can cost an order of magnitude less than its high end counterparts, at the

expense of a limited number of supported countries and lower accuracy; the typical

recognition rate is about 90% although as new releases appear this number is expected to

improve. For applications that can trade some recognition accuracy for an affordable price

SimpleLPR 2 is an option that should be considered.

From a developer’s perspective, SimpleLPR 2 main design goal is integration and deployment

simplicity. Hence, SimpleLPR 2 runtime can be redistributed along with third party

applications by just x-copying a few dll files that do not require COM registration.

SimpleLPR2.dll is dual, in addition to a C++ interface for native C++ applications it also

exports a .NET object model that can be directly used from VB or C#. The current version

supports more than 30 countries (see supported countries and limitations). It can read 24

bit RGB or 8 bit grayscale images from JPEG, TIFF, BMP or PNG files, or from a memory

buffer.

This guide contains both the product description and documentation for developers. In the

following sections all required information on how to integrate SimpleLPR 2 into a third

party application is provided.

 SimpleLPR 2.3 Software Development Kit 8 of 36

2 Supported Countries and Limitations

The current version can read license plates from the countries listed below, provided that

they are in good condition; namely the license plates should be crisp, readable, without

occlusion, bumps or scratches. In addition, images supplied to the SimpleLPR 2 engine should

portray the license plate as viewed from a frontal angle, and the height of the license plate

characters should be 20 pixel or taller.

Irrespective of complying with the above constraints, in general not all valid license plates

from a specific country can be recognized. The level of support varies from country to

country as it can be seen below.

2.1 License Plates of Algeria

Standard license plates in the formats described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Algeria are supported.

2.2 License Plates of Australia

General series standard issue license plates in the formats described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Australia are supported.

2.3 License Plates of Belgium

Both single line and square license plates in the 1973 format and newer are supported, as

described in the article http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Belgium.

2.4 License Plates of Bolivia

Plates complying with the standard described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Bolivia are supported.

2.5 License Plates of Brazil

Both single line and square license plates in the current 1990 format are supported, as

described in the article http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Brazil.

2.6 License Plates of Bulgaria

Standard single line and square license plates in the 1993 format described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Bulgaria are supported. Trailer,

diplomatic, and military vehicles are not supported.

2.7 License Plates of Canada

Standard license plates in the formats described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Canada are supported.

For designs featuring a non plain background the use of IR illuminators and filters is

recommended.

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Algeria
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Australia
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Belgium
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Bolivia
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Brazil
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Bulgaria
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Canada

 SimpleLPR 2.3 Software Development Kit 9 of 36

2.8 License Plates of Cape Verde

Standard license plates in the formats described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Cape_Verde are supported.

2.9 License Plates of Chile

Plates complying with the standard described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Chile are supported.

2.10 License Plates of Colombia

Standard license plates in the formats described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Colombia are supported.

2.11 License Plates of Croatia

Standard single line and square license plates in the format described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Croatia are supported.

Diplomatic and military vehicles are not supported.

2.12 License Plates of Cuba

Standard license plates in the new 2013 specification described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Cuba are supported.

2.13 License Plates of the Czech Republic

Single line and square license plates following the 2001 specifications or newer are

supported, as described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_the_Czech_Republic. Military

and diplomatic plates are not supported.

2.14 License Plates of Denmark

Standard single line and square license plates in the format described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Denmark are supported.

Diplomatic and military vehicles are not supported.

2.15 License Plates of Ecuador

Standard license plates in the formats described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Ecuador are supported.

2.16 License Plates of El Salvador

Standard single line license plates are supported.

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Cape_Verde
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Chile
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Colombia
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Croatia
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Cuba
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_the_Czech_Republic
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Denmark
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Ecuador

 SimpleLPR 2.3 Software Development Kit 10 of 36

2.17 License Plates of Estonia

Plates complying with the standard described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Estonia are supported.

2.18 License Plates of France

Single line and square license plates following the general or the newer 2009 specifications

are supported, as described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_France. Military and diplomatic

plates are not supported.

2.19 License Plates of Germany

The article http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Germany is the

source where the syntax rules for German license plates verification have been obtained

from. Specifically, the current 1994 format is supported for private and public vehicles as

described in the article. The list of valid district codes has been extracted from

http://de.wikipedia.org/wiki/Liste_der_Kfz-Kennzeichen_in_Deutschland. Trailer, diplomatic,

motorcycle and military vehicles are not supported.

Square license plates are only partially supported. Due to a limitation in the current engine

only license plates with two or three letter district codes can be read. This shortcoming will

be addressed in the future.

2.20 License Plates of Greece

Standard single line and square license plates in the 1972 and newer formats, as described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Greece, are supported.

Diplomatic and military vehicles are not supported.

2.21 License Plates of Guatemala

Standard single line license plates are supported.

2.22 License Plates of Honduras

Standard single line license plates are supported.

2.23 License Plates of Hungary

Standard single line license plates in the 1990 and newer formats, as described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Hungary, are supported. Square

two line license plates are not supported yet.

2.24 License Plates of India

Standard single line and square license plates in the 2000 and newer formats, as described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_India , are supported.

Diplomatic and military vehicles are not supported.

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Estonia
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_France
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Germany
http://de.wikipedia.org/wiki/Liste_der_Kfz-Kennzeichen_in_Deutschland
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Greece
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Hungary
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_India

 SimpleLPR 2.3 Software Development Kit 11 of 36

2.25 License Plates of Ireland

Standard license plates in the 1987 and later formats described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Ireland are supported.

2.26 License Plates of Israel

Standard single line and square license plates complying with the format described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Israel are supported. Police,

diplomatic and military vehicles are not supported.

2.27 License Plates of Italy

Standard single line and square license plates in the 1994 and newer formats, as described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Italy , are supported. Diplomatic

and military vehicles are not supported.

2.28 License Plates of Kenya

Plates complying with the standard described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Kenya are supported.

2.29 License Plates of Latvia

Standard single line and square license plates in the format described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Latvia are supported.

Diplomatic and military vehicles are not supported.

2.30 License Plates of the Netherlands

All standard single line and square license plates in the 1978 and newer formats are

supported, as described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_the_Netherlands. Military and

diplomatic plates are not supported.

2.31 License Plates of Norway

Standard single line and square license plates in the format described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Norway are supported.

Diplomatic and military vehicles are not supported.

2.32 License Plates of Peru

Plates complying with the standard described in http://www.carsandplates.com/pe.html are

supported.

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Ireland
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Israel
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Italy
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Kenya
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Latvia
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_the_Netherlands
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Norway
http://www.carsandplates.com/pe.html

 SimpleLPR 2.3 Software Development Kit 12 of 36

2.33 License Plates of Poland

All standard single line and square license plates issued after 2000 are supported, as

described in http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Poland . Military and

diplomatic plates are not supported.

2.34 License Plates of Portugal

All standard single line and square license plates in the 1992 and newer formats are

supported, as described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Portugal . Military and diplomatic

plates are not supported.

2.35 License Plates of Romania

All standard single line and square license plates in the 1992 and newer formats are

supported, as described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Romania . Military and

diplomatic plates are not supported.

2.36 License Plates of Singapore

All standard single line and square license plates issued after 1994 are supported, as

described in http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Singapore . The

checksum code is not verified. Military and diplomatic plates are not supported.

2.37 License Plates of Slovakia

All standard single line and square license plates in the 1997 and newer formats are

supported, as described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Slovakia . Military and diplomatic

plates are not supported.

2.38 License Plates of Spain

Private and public car license plates issued after 1980 are supported, as described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Spain. Trailer, diplomatic,

motorcycle and military vehicles are not supported. On the other hand, square license

plates are fully supported.

2.39 License Plates of Sweden

All standard single line and square license plates issued after 1973 are supported, as

described in http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Sweden. Military

and diplomatic plates are not supported.

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Poland
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Portugal
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Romania
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Singapore
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Slovakia
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Spain
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Sweden

 SimpleLPR 2.3 Software Development Kit 13 of 36

2.40 License Plates of Switzerland

Plates complying with the standard described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Switzerland are supported.

2.41 License Plates of Turkey

The current version supports License plates complying with the formats described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Turkey . Military and diplomatic

plates are not supported.

2.42 License Plates of the United Kingdom

SimpleLPR 2 can read private and public license plates from Great Britain issued after 1983.

See http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_the_United_Kingdom.

Trailer, diplomatic, motorcycle and military vehicles are not supported. Square license plates

issued after 2001 are supported.

2.43 License Plates of Venezuela

Standard license plates in the formats described in http://www.carsandplates.com/ve.html

are supported.

2.44 License Plates of Vietnam

License plates complying with the formats described in

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Vietnam are supported. Military

and diplomatic plates are not supported.

http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Switzerland
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Turkey
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_the_United_Kingdom
http://www.carsandplates.com/ve.html
http://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Vietnam

 SimpleLPR 2.3 Software Development Kit 14 of 36

3 Prerequisites, Installation and Deployment

3.1 Prerequisites

SimpleLPR 2 requires a computer running a Windows XP or newer operating system and the

MSXML 6.0 XML parser. From a hardware standpoint, the only requirement is a CPU

supporting SSE2 extensions.

Any 5 year old or newer computer kept regularly updated with Microsoft’s patches and

service packs should already meet the above requirements. Nevertheless, if required the

above software prerequisites can be downloaded from Microsoft.

1. MSXML 6.0 can be installed from

http://www.microsoft.com/downloads/details.aspx?FamilyID=D21C292C-368B-4CE1-

9DAB-3E9827B70604&displaylang=en

3. To check if a specific processor supports SSE2

http://en.wikipedia.org/wiki/SSE2

3.2 Installation

The SimpleLPR 2 SDK is shipped in a MSI installer. It creates the SDK file structure and

automatically takes care of the dependencies: if needed it will install the Visual Studio 2010

C++ runtime. It will also verify that MSXML 6.0 is installed and check for SSE2 extensions,

prompting the user if any of them are not available.

Upon installation SimpleLPR 2 operates in evaluation mode, which lasts for 30 days. Once

the evaluation period terminates SimpleLPR 2 will stop working, unless a valid product key is

supplied.

3.3 Deployment

SimpleLPR 2 can be deployed by simply copying the contents of the bin directory in the SDK

to the same folder as the application executable. If the target application is using the .NET

classes exposed by the SimpleLPR2.dll assembly it is important to copy also the contents

of the native folder. Two considerations to be borne in mind are

1. SimpleLPR 2 cannot operate in evaluation mode when redistributed. The application

has to supply a product key.

2. The installer of the third party application must ensure that all prerequisites are met.

http://www.microsoft.com/downloads/details.aspx?FamilyID=D21C292C-368B-4CE1-9DAB-3E9827B70604&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=D21C292C-368B-4CE1-9DAB-3E9827B70604&displaylang=en
http://en.wikipedia.org/wiki/SSE2

 SimpleLPR 2.3 Software Development Kit 15 of 36

4 License Plate Recognition with SimpleLPR 2

This section describes the major steps to integrate SimpleLPR 2 into an application. In each

stage both C++ and .NET flavors are examined individually. .NET sample code is presented

in C#.

4.1 SimpleLPR 2 Instantiation

This step comprises the tasks of loading SimpleLPR2 into the application process space and

creating an instance of the SimpleLPR engine.

Native C++ Applications

For native C++ applications a native dll is provided with name SimpleLPR2_native.dll, which

exports a public function, Setup that works as a factory method of ISimpleLPR objects. The

prototype of the Setup function is defined in include/SimpleLPR.h

ISimpleLPR * _stdcall Setup() throw ();

Although a .lib file is provided for SimpleLPR2_native.dll it is advised to perform the binding

programmatically by means of either the LoadLibrary or LoadLibraryEx calls. Once a pointer to

the Setup function is acquired, it can be used to create an instance of the SimpleLPR 2 engine,

encapsulated in the ISimpleLPR interface. The following code snippet illustrates this.

// Load the SimpleLPR dll

HMODULE hLib = LoadLibraryEx(L"SimpleLPR2.dll", NULL, 0);

if (hLib == NULL)

 … \\ Handle error condition

// Get the entry point to the Setup function

SimpleLPRSetupFunc pfnSetup = (SimpleLPRSetupFunc)::GetProcAddress(hLib,

"Setup");

if (pfnSetup == 0)

… \\ Handle error condition

// Create an instance of the SimpleLPR engine

ISimpleLPR *pLPR = (*pfnSetup)();

if (pLPR == NULL)

… \\ Handle error condition

… \\ Do your stuff

pLPR->release(); // Delete engine

 .NET Applications

A .NET assembly with name SimpleLPR2.dll is provided, which dispatches user calls to either

the 32 bit or 64 bit version of SimpleLPR2_native.dll depending on the calling assembly mode.

Once added to the project as an assembly reference an instance of the SimpleLPR 2 engine

can be created using the Setup static factory method in the SimpleLPR class.

ISimpleLPR lpr = SimpleLPR.Setup();

 SimpleLPR 2.3 Software Development Kit 16 of 36

4.2 Engine Configuration

Firstly, depending on whether SimpleLPR 2 is to be used in evaluation mode or not, a valid

product key must be provided. The product key can be supplied either from a file or from a

memory buffer. As it contains personal data from the purchaser in readable form the second

method is preferred.

Then, the user must decide what countries are to be enabled and what are their relative

weights. These weights are used to break ties in the case that two or more candidates from

different countries are equally feasible. The SimpleLPR 2 engine exports methods to assign

each country a weight equal or greater than 0. Setting a weight equal to 0 effectively disables

a country. Those weights are later normalized to the [0...1] range. As license plate

recognition goes on, chances are that discovered groups of text and numbers match the

syntax verification rules of more than one country. The ‘goodness’ index of each license

plate candidate is multiplied by the normalized country weight and the best candidate is

kept.

Enabling multiple countries is discouraged as it has an impact on reliability. In case this

cannot be avoided, the relative country weights should be set equal to the expected ratio of

vehicles from each country.

The samples below show how to set the product key and configure country weights in each

development platform.

Native C++ Applications

// Set the product key

bool bOk = pLPR->productKey_set(L”productkey.xml”);

if (! bOk)

… \\ Handle error condition

// Enable Germany, disable Spain and United Kingdom

bOK = pLPR->countryWeight_set(L”Germany”, 1.f)

if (! bOk)

… \\ Handle error condition

bOK = pLPR->countryWeight_set(L”Spain”, 0.f)

if (! bOk)

… \\ Handle error condition

bOK = pLPR->countryWeight_set(L”UK-GreatBritain”, 0.f)

if (! bOk)

… \\ Handle error condition

// Apply changes

bOK = pLPR->realizeCountryWeights();

if (! bOk)

… \\ Handle error condition

 SimpleLPR 2.3 Software Development Kit 17 of 36

.NET Applications

// Set the product key

lpr.set_productKey(“productkey.xml”);

// Enable Germany, disable Spain and United Kingdom

lpr.set_countryWeight(“Germany”, 1.0f);

lpr.set_countryWeight(“Spain”, 0.0f);

lpr.set_countryWeight(“UK-GreatBritain”, 0.0f);

// Apply changes

lpr.realizeCountryWeights();

4.3 License Plate Recognition

Once the SimpleLPR 2 engine has been properly configured the remaining step is creating an

instance of an IProcessor object to perform license plate recognition. Since IProcessor is not

thread safe, each working thread involved in LPR should keep its own instance of IProcessor.

An IProcessor can read and process images from a file, in either RGB or grayscale JPEG, TIFF,

PNG and BMP formats or, alternatively, it can process images directly from a memory buffer.

In the later case the image must be either RGB 24-bit or grayscale 8-bit. The output of the

ANPR methods is a list of license plate candidate objects. Each object having the license

plate text in Unicode string form, the global confidence index, and the bounding box and

confidence value of all individual elements in the license plate.

The license plate text is formatted according to the rules of each specific country so spaces

or hyphens can be added to separate groups of text and numbers. The returned confidence

index is the direct output from the OCR classifier. It ranges from 0 to 1, but it should not

be regarded as a probability. Depending on the license plate font and the specific glyph its

operating range can vary significantly. As a result, care should be taken when setting

thresholds to discard weak candidates. The rule of thumb is that very low values almost

always point to an unreliable detection, and values close to one imply a safe candidate.

Unfortunately, in most cases the confidence values lay in no one’s land and nothing can be

decided. Future versions of the product will try to address this problem. Finally, the global

candidate confidence index is taken as the lowest value of all elements in the license plate.

Native C++ Applications

// Create processor

IProcessor *pProc = pLPR->createProcessor();

if(pProc == NULL)

… \\ Handle error condition

// Process source file

ICandidates *pCds = pProc->analyze(L"vehicle.jpg", 120 /* max char height

*/);

if(pCds == NULL)

… \\ Handle error condition

if (pCds->numCandidates_get() == 0) std::wcout << L"No license plate

found" << std::endl;

else

{

 std::wcout << pCds->numCandidates_get() << L" license plates found:" <<

std::endl;

 SimpleLPR 2.3 Software Development Kit 18 of 36

 // Iterate over all candidates

 for (_SIZE_T i = 0; i < pCds->numCandidates_get(); ++i)

 {

 ICandidate *pCd = pCds->candidate_get(i);

 if(pCds == NULL)

 … \\ Handle error condition

 std::wcout << L"Candidate " << i + 1 << std::endl;

 std::wcout << L"Text: " << pCd->text_get() << L" , confidence: ";

 std::wcout << pCd->confidence_get() << L", Light background " << pCd-

>brightBackground_get() << std::endl;

 std::wcout << L"Elements: " << std::endl;

 // Iterate over all elements

 for (_SIZE_T j = 0; j < pCd->numElements_get(); ++j)

 {

 Element e;

 pCd->element_get(j, e);

 std::wcout << L"Glyph: " << e.glyph << L", confidence: " <<

e.fConfidence;

 std::wcout << L", left: " << e.boundingBox.left << L", top: " <<

e.boundingBox.top;

 std::wcout << L", width: " << e.boundingBox.width << L", height: " <<

e.boundingBox.height;

 std::wcout << std::endl;

 }

 pCd->release();

 }

}

// Cleanup

pCds->release();

pProc->release();

.NET Applications

// Create Processor

IProcessor proc = lpr.createProcessor();

// Process source file

List<Candidate> cds = proc.analyze(“vehicle.jpg”, 120 120 /* max char

height */);

if (cds.Count > 0)

{

// Iterate over all candidates

 foreach (Candidate cd in cds)

 Console.Write(" [{0}, {1}]", cd.text, cd.confidence);

Console.WriteLine();

}

else

Console.WriteLine("Nothing detected");

 SimpleLPR 2.3 Software Development Kit 19 of 36

4.4 Considerations on Error Handling and Resource

Management

For the sake of simplicity, the subject of error handling has been deliberately omitted in the

sample code above. In addition, the reference counting scheme implemented in the C++

interface deserves some discussion.

Native C++ Applications

Most C++ developers consider that exceptions are the best way of dealing with error

conditions in C++. However, exceptions are compiler vendor dependant and are not

appropriate for a public interface exported from a DLL. For this reason, SimpleLPR 2 relies

on the old technique of returning error codes and maintaining a per-thread error state.

Every method in the C++ interface returns either a boolean (true meaning success) or a

NULL value in case that the method is expected to return a pointer.

Once an error condition has been determined, further error information can be queried by

means of the lastError_get() method. Each thread keeps its own copy of the last_error

variable. The following code snippet shows how the error state can be obtained.

SimpleLPR2_Native::IErrorInfo *pErr = pLPR->lastError_get();

if (pErr != NULL)

{

 std::wcerr << L"Error occurred. Error code: " << pErr->errorCode << L",

description: " << pErr->description << std::endl;

 pErr->release(); // Free object

}

On the subject of resource management, the standard way of de-allocating objects in C++ is

using the delete operator. On the other hand, the golden rule of any DLL returning C++

objects is that resources must be allocated and de-allocated inside the DLL. A way to

accomplish it is making objects delete themselves. The reference counting idiom does this;

each object keeps track of how many references point to it. When this counter reaches 0

the object deletes itself. Thus, all objects exported in the C++ interface derive from

IReferenceCounted. This interface has two methods, addRef, which increments objects

reference counter by one, and release, which decrements it. All objects returned by the

SimpleLPR 2 factory methods have their reference counter set to 1 and a call to their release

method actually destroys them.

.NET Applications

As usual, .NET makes life easier for developers. Error conditions are dealt with the use

exceptions, which is the standard way in .NET. Likewise, resource management is not an

issue here as the garbage collector takes care of this subject.

 SimpleLPR 2.3 Software Development Kit 20 of 36

5 C++ Interface Reference

The file include\SimpleLPR.h contains all class declarations and function prototypes described

in this section. All members are declared under the SimpleLPR2_Native namespace.

5.1 Functions

5.1.1 Setup

SIMPLELPR_API ISimpleLPR * SIMPLELPR_CALL Setup() throw ();

Description: This is the only function exported by SimpleLPR2.dllI. It is a factory method for

 ISimpleLPR objects.

Returns: A pointer to a ISimpleLPR object. The returned ISimpleLPR object must be

 de-allocated by calling its release method.

Remarks: Since no .lib file is provided in the SDK, SimpleLPR2.dll must be loaded dynamically.

5.2 Structures

5.2.1 Rect

This structure represents a rectangle.

struct Rect

{

 __int32 left;

 __int32 top;

 __int32 width;

 __int32 height;

};

Members
left Leftmost coordinate of the rectangle.

top Topmost coordinate of the rectangle.

width Rectangle width.

height Rectangle height.

5.2.2 Element

It stores the LPR results of an individual character in a license plate.

struct Element

{

 wchar_t glyph;

 _REAL_T fConfidence

 Rect boundingBox;

};

Members
glyph Unicode representation of the character.

 SimpleLPR 2.3 Software Development Kit 21 of 36

fConfidence 'Goodness' of the recognition. Its range is 0 to 1 and can be used to rank

candidates although it should not be regarded as a probability. In general, a 2x

goodness value is not twice as good as x. See the section on LPR for more

detailed information on confidence values.

boundingBox Bounding rectangle of the character, in pixel coordinates.

5.2.3 VersionNumber

This structure holds the four numbers that comprise the SimpleLPR version number.

struct Rect

{

 unsigned __int32 A;

 unsigned __int32 B;

 unsigned __int32 C;

 unsigned __int32 D;

};

Members
A First element of the of SimpleLPR_Native.dll product number.

B Second element of the of SimpleLPR_Native.dll product number.

C Third element of the of SimpleLPR_Native.dll product number.

D Fourth element of the of SimpleLPR_Native.dll product number.

5.3 Interfaces

5.3.1 IReferenceCounted

This interface constitutes the base for all interfaces. It manages object life cycles by means of

reference counting. All factory methods in this library return pointers to objects with their

reference count set to 1 or more.

It is advisable to call the addRef method every time a pointer alias is created. Before an

object pointer goes out of scope its release method should be called. When an object

reference count reaches zero the object is destroyed.

struct IReferenceCounted

{

 virtual void addRef(void) throw () = 0;

 virtual void release(void) throw () = 0;

};

Methods

virtual void addRef(void) throw () = 0;

Description: Increments an object reference count by one.

virtual void release(void) throw () = 0;

 SimpleLPR 2.3 Software Development Kit 22 of 36

Description: Decrements an object reference count by one. When it reaches 0 the object is

destroyed.

5.3.2 IErrorInfo

This class conveys an error code and a description. Every time an error occurs an IErrorInfo

object is created and kept in thread local storage (TLS). To retrieve it use the

ISimpleLPR::lastError_get method.

struct IErrorInfo : public IReferenceCounted

{

 virtual _HRESULT errorCode_get() const throw () = 0;

 virtual const wchar_t * description_get() const throw () = 0;

};

Methods

virtual _HRESULT errorCode_get() const throw () = 0;

Description: Returns a COM like HRESULT error code.

virtual const wchar_t * description_get() const throw () = 0;

Description: Returns a textual description of the error.

5.3.3 ICandidate

Encapsulates a license plate candidate.

struct ICandidate : public IReferenceCounted

{

 virtual const wchar_t *text_get() const throw () = 0;

 virtual const wchar_t *country_get() const throw () = 0;

 virtual _REAL_T confidence_get() const throw () = 0;

 virtual bool brightBackground_get() const throw () = 0;

 virtual _SIZE_T numElements_get() const throw () = 0;

 virtual bool element_get(_SIZE_T id, /*[out]*/Element &rElem) const

throw () = 0;

};

Methods

virtual const wchar_t *text_get() const throw () = 0;

Description: Returns the Unicode representation of the license plate string. Separators are

 represented as white space.

virtual const wchar_t *country_get() const throw () = 0;

Description: Returns the country code in string form.

virtual _REAL_T confidence_get() const throw () = 0;

 SimpleLPR 2.3 Software Development Kit 23 of 36

Description: Returns the overall 'goodness' of the recognition. Currently it is calculated as

 the minimum goodness value of all individual characters in the license plate.

virtual bool brightBackground_get() const throw () = 0;

Description: true if the license plate features dark text on a light background. false if

otherwise.

virtual _SIZE_T numElements_get() const throw () = 0;

Description: Number of components in the license plate..

virtual bool element_get(_SIZE_T id, /*[out]*/Element &rElem

) const throw () = 0;

Description: Information about the individual chars that make up the license plate. They are

 listed in the same order as they appear in the text string. To know the physical

 layout of the license plates use the Element::bbox field.

5.3.4 ICandidates

Encapsulates a collection of license plate candidates.

struct ICandidates : public IReferenceCounted

{

 virtual _SIZE_T numCandidates_get() const throw () = 0;

 virtual ICandidate *candidate_get(_SIZE_T id) const throw () = 0;

};

Methods

virtual _SIZE_T numCandidates_get() const throw () = 0;

Description: Returns the number of elements in the collection.

virtual ICandidate *candidate_get(_SIZE_T id) const throw ()

= 0;

Description: Returns a candidate object given its index.

Parameters

 Input

 Id: Candidate identifier. Must be <= numCandidates_get()

Returns: A pointer to the selected candidate object.

Remarks: The returned ICandidate object must be de-allocated by calling its release method.

 SimpleLPR 2.3 Software Development Kit 24 of 36

5.3.5 IProcessor

Encapsulates the LPR functionality of SimpleLPR 2. This class is not multi-threaded and,

therefore, each thread should use a different IProcessor instance.

struct IProcessor : public IReferenceCounted

{

virtual ICandidates *analyze_C3(const void *pcvImgData,

 _SIZE_T widthStep,

 _SIZE_T width,

 _SIZE_T height,

 _SIZE_T maxCharHeight,

 _REAL_T fWeight0,

 _REAL_T fWeight1,

 _REAL_T fWeight2) throw () = 0;

virtual ICandidates *analyze(const void *pcvImgData,

 _SIZE_T widthStep,

 _SIZE_T width,

 _SIZE_T height,

 _SIZE_T maxCharHeight) throw () = 0;

 virtual ICandidates *analyze(const wchar_t * pcwsImgPath,

 _SIZE_T maxCharHeight) throw () = 0;

};

Methods

virtual ICandidates *analyze_C3(const void *pcvImgData,

 _SIZE_T widthStep,

 _SIZE_T width,

 _SIZE_T height,

 _SIZE_T maxCharHeight,

 _REAL_T fWeight0,

 _REAL_T fWeight1,

 _REAL_T fWeight2) throw () =

0;

Description: Looks for license plate candidates in a memory buffer containing a 3-channel 8

bit/channel color image stored in pixel order. Every pixel in the source image is

internally converted to gray scale according to the following formula:

L = fWeight0 * C0 + fWeight1 * C1 + fWeight2 * C2

For instance, to convert a RGB image to gray scale according the standard for

the NTSC CRT the value of the weights should be:

 Red: fWeight0 = 0.299

 Green: fWeight1 = 0.587

 Blue: fWeight2 = 0.114

Parameters

 Input

 SimpleLPR 2.3 Software Development Kit 25 of 36

 pImgData: Pointer to the first image row. The image must be a 3-channel 8 bit/channel

color image stored in pixel order and down. The top row of the image is the

first row in memory, followed by next row down.

 widthStep: Distance in bytes between starts of consecutive rows in the source image.

 width: Image width in pixels.

 height: Image height in pixels.

 maxCharHeight: Maximum height in pixels of the characters in the license plate.

 fWeight0: Weight of the first channel.

 fWeight1: Weight of the second channel.

 fWeight2: Weight of the third channel.

Returns: A pointer to an ICandidates collection containing all license plate candidates. If

 something goes wrong it returns a NULL pointer, use ISimpleLPR::lastError_get to

 get the error information.

Remarks: This method is not multi-threaded. The returned ICandidates object must be

 de-allocated by calling its release method.

virtual ICandidates *analyze(const void *pcvImgData,

 _SIZE_T widthStep,

 _SIZE_T width,

 _SIZE_T height,

 _SIZE_T maxCharHeight) throw ()

= 0;

Description: Looks for license plate candidates in a memory buffer containing an 8 bit gray

 scale image.

Parameters

 Input

 pImgData: Pointer to the first image row. The image must be 8 bit gray scale and top

 down. The top row of the image is the first row in memory, followed by the

 next row down.

 widthStep: Distance in bytes between starts of consecutive rows in the source image.

 width: Image width in pixels.

 height: Image height in pixels.

 maxCharHeight:: Maximum height in pixels of the characters in the license plate

Returns: A pointer to an ICandidates collection containing all license plate candidates. If

 something goes wrong it returns a NULL pointer, use ISimpleLPR::lastError_get to

 get the error information.

Remarks: This method is not multi-threaded. The returned ICandidates object must be

 de-allocated by calling its release method.

virtual ICandidates *analyze(const wchar_t * pcwsImgPath,

 _SIZE_T maxCharHeight) throw ()

= 0;

Description: Looks for license plate candidates in an image in a .jpg, .png, .tif or .bmp file. The

 images can be either 24 bit RGB or 8 bit gray scale.

Parameters

 Input

 SimpleLPR 2.3 Software Development Kit 26 of 36

 pcwsImgPath: Path to a file containing a 24 bit RGB or 8 bit gray scale image.

 maxCharHeight:: Maximum height in pixels of the characters in the license plate

Returns: A pointer to a ICandidates collection containing all license plate candidates. If

 something goes wrong it returns a NULL pointer, use ISimpleLPR::lastError_get to

 get the error information.

Remarks: This method is not multi-threaded. The returned ICandidates object must be

 de-allocated by calling its release method.

5.3.6 ISimpleLPR

Encapsulates the SimpleLPR 2 engine.

struct ISimpleLPR : public IReferenceCounted

{

 virtual _SIZE_T numSupportedCountries_get() const throw () = 0;

 virtual bool countryCode_get(_SIZE_T id,

 /*[out]*/const wchar_t *&rpcwsCode

) const throw () = 0;

 virtual bool countryWeight_get(_SIZE_T id,

 /*[out]*/_REAL_T &rfWeight

) const throw () = 0;

 virtual bool countryWeight_get(const wchar_t *id,

 /*[out]*/_REAL_T &rfWeight

) const throw () = 0;

 virtual bool countryWeight_set(_SIZE_T id,

 _REAL_T fWeight) throw () = 0;

 virtual bool countryWeight_set(const wchar_t *id,

 _REAL_T fWeight) throw () = 0;

 virtual bool realizeCountryWeights() throw () = 0;

 virtual IErrorInfo *lastError_get(bool bClear = true) throw () = 0;

 virtual IProcessor *createProcessor() throw () = 0;

 virtual bool productKey_set(const wchar_t *productKeyPath) throw ()

= 0;

 virtual bool productKey_set(const void *key, _SIZE_T keySize) throw

() = 0;

virtual bool versionNumber_get(/*[out]*/SIMPLELPR_VersionNumber

&rVersion) throw () = 0;

};

Methods

virtual _SIZE_T numSupportedCountries_get() const throw () =

0;

Description: Returns the number of supported countries.

virtual bool countryCode_get(_SIZE_T id, /*[out]*/const

 wchar_t *&rpcwsCode) const

throw () = 0;

Description: Given a country index it returns its string identifier.

Parameters

 Input

 SimpleLPR 2.3 Software Development Kit 27 of 36

 id: The country index. 0 <= id <= numSupportedCountries_get() - 1.

 Output:

 rpcwsCode:: The country Unicode string identifier..

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

virtual bool countryWeight_get(_SIZE_T id,

 /*[out]*/_REAL_T &rfWeight)

const throw () = 0;

Description: Given a country index it returns the relative country weight. Weights are used

to break ties when a candidate can belong to multiple countries.

Parameters

 Input

 Id: The country index. 0 <= id <= numSupportedCountries_get() - 1.

 Output

 rfWeight:: The relative weight of the country.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

virtual bool countryWeight_get(const wchar_t *id,

 /*[out]*/_REAL_T &rfWeight)

const throw () = 0;

Description Given a country string identifier it returns the relative country weight. Weights

are used to break ties when a candidate can belong to multiple countries.

Parameters

 Input

 Id: The country string identifier. See countryCode_get.

 Output

 rfWeight:: The relative weight of the country.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

virtual bool countryWeight_set(_SIZE_T id,

 _REAL_T fWeight) throw () = 0;

Description: Given a country index it sets the country relative weight. Weights are used to

 break ties when a candidate can belong to multiple countries.

Parameters

 Input

 id: The country index. 0 <= id <= numSupportedCountries_get() - 1.

 fWeight:: The desired country weight. fWeight >= 0.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

Remarks: This method is not multi-threaded. Weight must be >= 0. Use a zero weight to

 effectively disable a specific country.

 SimpleLPR 2.3 Software Development Kit 28 of 36

virtual bool realizeCountryWeights() throw () = 0

Description: Rebuilds the internal country verification lookup tables based on which countries

 are enabled and their relative weights. Call it once you have finished configuring

 country weights.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

Remarks: This method is not multi-threaded. Depending on the countries selected this

 method can be time consuming. After this method execution all existing and new

 IProcessor instances will start using the new weights. Avoid calling this method

 when another thread is executing IProcessor::analyze.

virtual IErrorInfo *lastError_get(bool bClear = true) throw

() = 0;

Description Returns an IErrorInfo object that describes the latest error occurred.

Parameters

 Input

 bClear: If true the error state will be cleared after this call.

Returns: An IErrorInfo object that describes the latest error or NULL if no error has

 occurred since application startup or the last call to lastError_get with bClear

 set to true.

Remarks: This method is multi-threaded. In particular each thread maintains a TLS slot with

 error state so threads can be independent from each other.

virtual IProcessor *createProcessor() throw () = 0;

Description: Creates a new IProcessor object.

Returns: The newly created IProcessor instance, or NULL if the method failed. Use

 ISimpleLPR::lastError_get to obtain the error information.

Remarks: This method is multi-threaded. For this method to succeed, either the product

 must be within the evaluation period o a valid product key must be supplied using

 productKey_set. The returned IProcessor object must be de-allocated by calling

 its release method.

virtual bool productKey_set(const wchar_t *productKeyPath)

throw () = 0;

Description: Sets the product key from a license file.

Parameters

 Input

 productKeyPath: Path to the product key file.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

virtual bool productKey_set(const void *key, _SIZE_T keySize

) throw () = 0;

Description: Sets the product key from a memory buffer.

 SimpleLPR 2.3 Software Development Kit 29 of 36

Parameters

 Input

 key: Pointer to the memory buffer.

 keySize: keySize in bytes.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

virtual bool versionNumber_get(

/*[out]*/SIMPLELPR_VersionNumber &rVersion) throw () = 0;

Description: Gets the version number of SimpleLPR2_native.dll.

Parameters

 Output:

 rVersion:: The 4 element version number of SimpleLPR2_native.dll.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

 SimpleLPR 2.3 Software Development Kit 30 of 36

6 .NET Interface Reference

6.1 SimpleLPR

SimpleLPR 2 factory class.

6.1.1 Methods

6.1.1.1 Setup

Creates a ISimpleLPR object.

6.1.1.1.1 Return Value

Return Value: A ISimpleLPR instance.

6.2 ISimpleLPR

Encapsulates the SimpleLPR 2 engine.

6.2.1 Properties

6.2.1.1 numSupportedCountries

Return Value: Number of supported countries.

6.2.1.2 versionNumber

Return Value: Gets the version number of SimpleLPR2_native.dll.

6.2.2 Methods

6.2.2.1 set_productKey(System.Byte[])

Sets the product key from a memory buffer.

6.2.2.1.1 Parameters

productKey: Byte array containing the product key.

6.2.2.2 set_productKey(System.String)

Sets the product key from a license file.

6.2.2.2.1 Parameters

productKeyPath: Path to the product key file.

 SimpleLPR 2.3 Software Development Kit 31 of 36

6.2.2.3 createProcessor

Creates a new IProcessor object.

6.2.2.3.1 Return Value

Return Value: The newly created IProcessor instance.

6.2.2.4 realizeCountryWeights

Rebuilds the internal country verification lookup tables based on which countries are enabled

and their relative weights. Call it once you have finished configuring country weights.

6.2.2.5 set_countryWeight(System.String,System.Single)

Sets the country relative weight. Weights are used to break ties when a candidate can belong

to multiple countries.

6.2.2.5.1 Parameters

id: The country string identifier. See get_countryCode(System.UInt32).

val: The desired country weight. val >= 0

6.2.2.6 get_countryWeight(System.String)

Given a country string identifier it gets the country relative weight. Weights are used to break

ties when a candidate can belong to multiple countries.

6.2.2.6.1 Parameters

id: The country string identifier. See get_countryCode(System.UInt32).

6.2.2.6.2 Return Value

Return Value: The relative weight of the country.

6.2.2.7 set_countryWeight(System.UInt32,System.Single)

Sets the country relative weight. Weights are used to break ties when a candidate can belong

to multiple countries.

6.2.2.7.1 Parameters

id: The country index. 0 <= id <= numSupportedCountries - 1

val: The desired country weight. val >= 0

 SimpleLPR 2.3 Software Development Kit 32 of 36

6.2.2.8 get_countryWeight(System.UInt32)

Given a country index it gets the country relative weight. Weights are used to break ties when

a candidate can belong to multiple countries.

6.2.2.8.1 Parameters

id: The country index. 0 <= id <= numSupportedCountries- 1

6.2.2.8.2 Return Value

Return Value: The relative weight of the country.

6.2.2.9 get_countryCode(System.UInt32)

Given a country index it returns its string identifier.

6.2.2.9.1 Parameters

id: The country index. 0 <= id <= numSupportedCountries- 1

6.2.2.9.2 Return Value

Return Value: The country string identifier.

6.3 IProcessor

Provides access to the license plate recognition functionality of SimpleLPR.

This class is not multi-threaded and, therefore, each thread should use a different IProcessor

instance.

6.3.1 Methods

6.3.1.1 analyze(System.String,System.UInt32)

Looks for license plate candidates in an image loaded from a .jpg, .png, tif or .bmp file. The

images can be either 24 bit RGB or 8 bit gray scale.

imgPath: Path to a file containing a 24 bit RGB or 8 bit gray scale image.

maxCharHeight: Maximum height in pixels of the characters in the license plate.

Return Value: List of Candidate containing all license plate candidates.

6.3.1.2 analyze(System.IntPtr,System.UInt32,System.UInt32,System.UInt32,Sys

tem.UInt32)

Looks for license plate candidates in a memory buffer containing a 8 bit gray scale image.

 SimpleLPR 2.3 Software Development Kit 33 of 36

6.3.1.2.1 Parameters

pImgData: Pointer to the first image row. The image must be 8 bit gray scale and top down:

the top row of the image is the first row in memory, followed by the next row down.

widthStep: Distance in bytes between starts of consecutive rows in the source image.

width: Image width in pixels.

height: Image height in pixels.

maxCharHeight: Maximum height in pixels of the characters in the license plate.

6.3.1.2.2 Return Value

Return Value: List of Candidate containing all license plate candidates.

6.3.1.3 analyze_C3(System.IntPtr, uint, uint, uint, uint, float, float, float)

Looks for license plate candidates in a memory buffer containing a 3-channel 8 bit/channel

color image stored in pixel order. Every pixel in the source image is internally converted to

gray scale according to the following formula:

 L = fWeight0 * C0 + fWeight1 * C1 + fWeight2 * C2.

 For instance, to convert a RGB image to gray scale according the standard for the NTSC

CRT the value of the weights should be:

Red: fWeight0 = 0.299 Green: fWeight1 = 0.587 Blue: fWeight2 = 0.114.

6.3.1.3.1 Parameters

pImgData: Pointer to the first image row. The image must be a 3-channel 8 bit/channel color

image stored in pixel order and top down: the top row of the image is the first row in

memory, followed by the next row down.

widthStep: Distance in bytes between starts of consecutive rows in the source image.

width: Image width in pixels.

height: Image height in pixels.

maxCharHeight: Maximum height in pixels of the characters in the license plate.

fWeight0: Weight of the first channel.

fWeight1: Weight of the second channel.

fWeight2: Weight of the third channel.

 SimpleLPR 2.3 Software Development Kit 34 of 36

6.3.1.3.2 Return Value

Return Value: List of Candidate containing all license plate candidates.

6.4 Candidate

Encapsulates a license plate candidate.

6.4.1 Fields

6.4.1.1 elements

Information about the individual chars that make up the license plate. They are listed in the

same order as they appear in the text string. To know the physical layout use the bbox field.

6.4.1.2 brightBackground

True if the license plate features dark text on a light background. False if otherwise.

6.4.1.3 confidence

Overall 'goodness' of the recognition. Currently it is calculated as the minimum goodness

value of all individual characters in the license plate. See confidence.

6.4.1.4 country

Country code string.

6.4.1.5 text

Unicode representation of the license plate string. Separators are represented as white space.

6.5 Element

Encapsulates a candidate character in a license plate.

6.5.1 Fields

6.5.1.1 bbox

Bounding box of the character, in pixel coordinates.

 SimpleLPR 2.3 Software Development Kit 35 of 36

6.5.1.2 confidence

'Goodness' of the recognition. Its range is 0 to 1 and can be used to rank candidates although

it should not be regarded as a probability. In general, a 2x goodness value is not twice as

good as x.

6.5.1.3 glyph

Unicode representation of the character.

	1 Introduction
	2 Supported Countries and Limitations
	2.1 License Plates of Algeria
	2.2 License Plates of Australia
	2.3 License Plates of Belgium
	2.4 License Plates of Bolivia
	2.5 License Plates of Brazil
	2.6 License Plates of Bulgaria
	2.7 License Plates of Canada
	2.8 License Plates of Cape Verde
	2.9 License Plates of Chile
	2.10 License Plates of Colombia
	2.11 License Plates of Croatia
	2.12 License Plates of Cuba
	2.13 License Plates of the Czech Republic
	2.14 License Plates of Denmark
	2.15 License Plates of Ecuador
	2.16 License Plates of El Salvador
	2.17 License Plates of Estonia
	2.18 License Plates of France
	2.19 License Plates of Germany
	2.20 License Plates of Greece
	2.21 License Plates of Guatemala
	2.22 License Plates of Honduras
	2.23 License Plates of Hungary
	2.24 License Plates of India
	2.25 License Plates of Ireland
	2.26 License Plates of Israel
	2.27 License Plates of Italy
	2.28 License Plates of Kenya
	2.29 License Plates of Latvia
	2.30 License Plates of the Netherlands
	2.31 License Plates of Norway
	2.32 License Plates of Peru
	2.33 License Plates of Poland
	2.34 License Plates of Portugal
	2.35 License Plates of Romania
	2.36 License Plates of Singapore
	2.37 License Plates of Slovakia
	2.38 License Plates of Spain
	2.39 License Plates of Sweden
	2.40 License Plates of Switzerland
	2.41 License Plates of Turkey
	2.42 License Plates of the United Kingdom
	2.43 License Plates of Venezuela
	2.44 License Plates of Vietnam

	3 Prerequisites, Installation and Deployment
	3.1 Prerequisites
	3.2 Installation
	3.3 Deployment

	4 License Plate Recognition with SimpleLPR 2
	4.1 SimpleLPR 2 Instantiation
	Native C++ Applications
	.NET Applications

	4.2 Engine Configuration
	Native C++ Applications
	.NET Applications

	4.3 License Plate Recognition
	Native C++ Applications
	.NET Applications

	4.4 Considerations on Error Handling and Resource Management
	Native C++ Applications
	.NET Applications

	5 C++ Interface Reference
	5.1 Functions
	5.1.1 Setup

	5.2 Structures
	5.2.1 Rect
	5.2.2 Element
	5.2.3 VersionNumber

	5.3 Interfaces
	5.3.1 IReferenceCounted
	5.3.2 IErrorInfo
	5.3.3 ICandidate
	5.3.4 ICandidates
	5.3.5 IProcessor
	5.3.6 ISimpleLPR

	6 .NET Interface Reference
	6.1 SimpleLPR
	6.1.1 Methods
	6.1.1.1 Setup
	6.1.1.1.1 Return Value

	6.2 ISimpleLPR
	6.2.1 Properties
	6.2.1.1 numSupportedCountries
	6.2.1.2 versionNumber

	6.2.2 Methods
	6.2.2.1 set_productKey(System.Byte[])
	6.2.2.1.1 Parameters

	6.2.2.2 set_productKey(System.String)
	6.2.2.2.1 Parameters

	6.2.2.3 createProcessor
	6.2.2.3.1 Return Value

	6.2.2.4 realizeCountryWeights
	6.2.2.5 set_countryWeight(System.String,System.Single)
	6.2.2.5.1 Parameters

	6.2.2.6 get_countryWeight(System.String)
	6.2.2.6.1 Parameters
	6.2.2.6.2 Return Value

	6.2.2.7 set_countryWeight(System.UInt32,System.Single)
	6.2.2.7.1 Parameters

	6.2.2.8 get_countryWeight(System.UInt32)
	6.2.2.8.1 Parameters
	6.2.2.8.2 Return Value

	6.2.2.9 get_countryCode(System.UInt32)
	6.2.2.9.1 Parameters
	6.2.2.9.2 Return Value

	6.3 IProcessor
	6.3.1 Methods
	6.3.1.1 analyze(System.String,System.UInt32)
	6.3.1.2 analyze(System.IntPtr,System.UInt32,System.UInt32,System.UInt32,System.UInt32)
	6.3.1.2.1 Parameters
	6.3.1.2.2 Return Value

	6.3.1.3 analyze_C3(System.IntPtr, uint, uint, uint, uint, float, float, float)
	6.3.1.3.1 Parameters
	6.3.1.3.2 Return Value

	6.4 Candidate
	6.4.1 Fields
	6.4.1.1 elements
	6.4.1.2 brightBackground
	6.4.1.3 confidence
	6.4.1.4 country
	6.4.1.5 text

	6.5 Element
	6.5.1 Fields
	6.5.1.1 bbox
	6.5.1.2 confidence
	6.5.1.3 glyph

